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Unitary group subjoinings 

R C King 
Mathematics Department, University of Southampton, Southampton SO9 SNH, UK 

Received 17 June 1980 

Abstract. The subjoining of one compact Lie group H to another such group G is discussed 
with particular reference to the cases for which G = U(N) and H = U(n). It is shown that 
maximal subjoinings of these unitary groups are specified by means of the monomial 
symmetric fu .ctions. Subjoinings, which are defined in terms of mappings between weight 
spaces, are studied through the properties of characters of the irreducible representations. 
The branching rules corrresponding to subjoinings are found to involve plethysms. Methods 
of evaluating the appropriate plethysms are illustrated, some of which make use of 
subjoining chains whilst others exploit the Weyl symmetry groups of G and H to obtain 
results more directly. The fact that maximal embeddings are special cases of non-maximal 
subjoinings is demonstrated and discussed. 

1. Introduction 

Recently a relation between semi-simple Lie algebras has been introduced by Patera 
and Sharp (1980) which includes the embedding of one such algebra in another as a 
special case. This generalisation of embedding has been called subjoining. 

The definition of subjoining depends upon the existence of a branching rule 
projecting the set of weights of each finite-dimensional irreducible representation of 
one semi-simple Lie algebra onto a set of weights associated with another semi-simple 
Lie algebra. This latter set is, in general, the difference between two sets, each of which 
is a set of weights of a collection of finite-dimensional irreducible representations. 

Patera et a1 (1980) have given several examples of subjoinings and a start has been 
made on the problem of enumerating all maximal subjoinings. It is shown here that 
some of these can be easily understood in terms of the properties of symmetric 
functions. In the case of the unitary groups these functions enter the discussion quite 
naturally since the characters of the irreducible representations of the unitary groups 
are the symmetric functions known as Schur functions, as pointed out by Littlewood 
(1950). Alternative bases for the set of all symmetric functions exist and, after a general 
discussion of the nature of subjoinings and their specification in § 2, the power-sum 
symmetric functions are shown in 0 3 to specify maximal subjoinings of the unitary 
group to itself. 

In Q 4 this idea is generalised through the use of multiplicative power-sum sym- 
metric functions. However, by virtue of their multiplicative nature, this leads to 
non-maximal subjoinings. 

Following a discussion of the role played by the Weyl symmetry group in relating 
equivalent subjoinings, it is shown in 0 5 that the monomial symmetric functions serve 
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to specify maximal subjoinings. Furthermore the maximal embeddings defined by 
Schur functions are discussed in 8 6 where it is demonstrated that they are, in general, 
non-maximal subjoinings. 

In each of § §  3, 4, 5 and 6 branching rules are calculated using plethysms of S 
functions introduced by Littlewood (1950) and tabulated by, for example, Ibrahim 
(1950), Butler and Wybourne (1971) and Vanagas (1971). The fact that these 
plethysms are themselves defined by mappings between weight spaces has been 
exploited elsewhere (King and Plunkett 1976) and this point is taken up in § 7 in order 
to demonstrate the ease with which branchings associated with subjoinings may be 
calculated. 

Finally, in the concluding Q 8, an important step is taken towards the goal of 
enumerating all maximal subjoinings. 

2. The specification of subjoinings 

Following Patera and Sharp (1980, § 6), if g and h are semi-simple Lie algebras of rank 
k ,  and kh respectively, with k g >  k h ,  then h is said to be subjoined to g, signified by 
writing g > h ,  if and only if there exists a real, k h X  k,, matrix 9 such that for all 
finite-dimensional, irreducible representations A of g 

where W A  is the set of weights of A, W w  is the set of weights of p, and the summation is 
carried out over all finite-dimensional irreducible representations p of h. The branch- 
ing multiplicity coefficients ~ ; 1  are integers: positive, zero or negative. 

Since this definition, (2.1), only involves the weights of finite-dimensional 
representations of g and h it also serves to define the subjoining of H to G again signified 
by writing G > H, where G and H are the compact Lie groups associated with g and h 
respectively. It is then possible to redefine the concept of subjoining in terms of the 
characters of finite-dimensional representations of compact Lie groups. 

The character ,yp of a finite-dimensional, unitary, irreducible representation A, of 
the compact Lie group G associated with a Lie algebra g of rank k ,  may be written in the 
form 

where + = G 2 , .  . . , ICldG) is a set of real class parameters subject to (dG- k,) 
constraints (King and Al-Qubanchi 1980). This expansion serves to define the weight 
vectors m = (ml ,  m2, . . . , mdc) and their multiplicities in the irreducible 
representation AG. A similar expression may be written down for the characters ,ygH of 
the irreducible representation p H  of the compact Lie group H, where 4 = 
(q517 42, . . . , ddH) is a set of real class parameters subject to (dH - kh) constraints if kh is 
the rank of the corresponding Lie algebra h. 

With this notation the analogue of (2.1) is the statement that the compact Lie group 
His  subjoined to the compact Lie group G if and only if there exists a linear operator Q 
which maps the vector of class parameters q5 of H to a vector + = Q 4  of class 
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parameters of G such that for all finite-dimensional irreducible representations AG of G 

where the summation is carried out over all finite-dimensional irreducible represen- 
tations pH of H and the branching multiplicities B k l  are, as before, integers: positive, 
zero or negative. 

The self-dual nature of the Euclidean spaces of dimension do and dH used to specify 
the class parameter vectors @ and q5, and the corresponding weight vectors, ensures that 
corresponding to Q there exists a weight projection operator P given by 

P=QT (2.4) 

exp (im . Q+) = exp (iPm . q 5 )  (2.5) 

for all weights m of G and all class parameter vectors 4 of H. This leads, via (2.2) and its 
analogue for the characters of H, to the recovery of (2.1). The action of P on any 
particular weight vector m of G is to project it from the weight space of G to that of H. 
The only difference between P and B arises from the fact that the definition of P 
involves, for convenience, the embedding of the weight spaces of G and H of dimension 
k ,  and kh in Euclidean spaces of dimension dG and d H  respectively. Thus P is a dH X d G  
matrix whilst B is a kh x k ,  matrix. Since it is the matrix Q which serves to define the 
relationship between characters of G and H it is this dH X dG matrix which is used in 
what follows to specify subjoinings. 

Following Patera and Sharp (1980) it is convenient to write in place of (2.1) a 
symbolic form of (2.3), namely 

which is such that 

Since the definition of subjoining involves sets of weights associated with irreducible 
representations it follows that for a given subjoining Q is not unique. This is best seen 
by noting the action of the Weyl symmetry groups which are the symmetry groups of the 
weight diagrams of irreducible representations. The actions of typical elements S and T 
of the Weyl symmetry groups WG and WH of G and H respectively are such that (King 
and Al-Qubanchi 1980, King 1980) 

xi$ = XP and Sm - m for S E WG (2.7) 

x% = XZ" and T m  - for T E WH. (2.8) 

Q + SQT for S E  WG, T E WH (2.9) 
without affecting (2.3) in any way. 

In order to specify subjoinings of H to G which are not equivalent with respect to 
transformations of the form (2.9) it is not necessary to define the branching multi- 
plicities B k  for all pH in (2.3) and (2.6) for all AG. It is only necessary to give these 
branching multiplicities for one or, at most, two irreducible representations A G  of G. 
The criterion which must be fulfilled is that the branching multiplicities should be 
specified for a sufficiently large, but minimal number of irreducible representations AG 

M A G  - M A G  

M*H -M'",H 

It follows that the operator Q appearing in (2.3) may undergo the transformation 
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of G for the projection Pm of every possible weight vector of G to be found by making 
use of the linearity of the action of P. This is entirely analogous to the problem, 
discussed and solved by Dynkin (1957, page 125), of enumerating embeddings, rather 
than subjoinings, of H in G defined up to linear equivalence. Thus for both embeddings 
and subjoinings it is sufficient in almost all cases to determine P, and hence Q, up to 
equivalence under (2.9) by fixing the branching multiplicities BZ,G for all pH, where wG 
is the defining representation of G.  In the case of the groups SO(2k) it is also necessary 
to specify the branching of one of the spin representations A+. 

In  the cases for which Q is fixed by the branching of the defining representation wG 
of G into irreducible representations of H it is convenient to write 

Q = QGH = Q ( 9 ~ )  (2.10) 

where, in the notation of (2.6), the subjoining is defined by 

(2.11) 

As pointed out by Patera et a1 (1980), just as there exist chains of group embeddings 
so there exist chains of group subjoinings. A subjoining G > H defined by QGH is said to 
be maximal if there exist no subjoinings G > K and K > H defined by QGK and QKH 

respectively, such that 

Q G H =  QGKQKH, (2.12) 

other than those for which K is isomorphic to G or H with QGK or QKH defining merely 
an automorphism of G or H respectively. 

If the subjoining G > H  is not maximal then there does exist a subjoining chain 
G > K > H such that in the notation of (2.3) and (2.12) 

XP =z X & H +  = x ~ K ~ K H +  = x ^ ~ G , K ~  

so that 

(2.13) 

(2.14) 

It has been assumed that the class parameters of G, K and H are +, 8 and 4 respectively 
with 

@ = Q G K e  and 8 = Q K H ~ .  (2.15) 

3. Subjoinings specified by S, 

In order to understand the nature of the subjoining relation and to make progress with 
the problem of enumerating maximal subjoinings it is instructive to consider the unitary 
groups in some detail. 
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Each n x n matrix A which is an element of U ( n )  is conjugate to a diagonal matrix 
with diagonal elements exp(ir$l), e ~ p ( i r $ ~ ) ,  . . . , exp(i4,). Thus the defining irreducible 
representation of U ( n ) ,  denoted by (1) has character 

,&’ = Tr A = exp(ir$l) + exp(i4J + . . . +exp(i4,). (3.1) 

This is manifestly invariant under permutations of the components of corresponding 
to the fact that the Weyl symmetry group of U ( n )  is the symmetric group S,. 

Each irreducible, covariant tensor representation { p }  of U ( n )  is specified by means 
of a partition fi = (p1, pz, . . . , p,,) with p l  L p2 L . . . p,, L 0. If p is a partition of m 
so that p l + p z +  . . . + p n  = m then it is convenient to write p k m  following the 
notation of Hall (1959). Littlewood (1950, page 188) showed that 

(3.2) XI$ -e,(X) 

xi = exp(idj) for j = l , 2  , . . . ,  n, (3.3) 

b) - 

where 

and the notation is again that of Hall (1959) whereby e,(x) denotes a Schiir function or 
S function of the indeterminates XI, x ~ ,  . . . , x,. This has a combinatorial definition in 
terms of standard Young tableaux as given by Hall (1959) and Stanley (1971) which 
may be used (King and Plunkett 1976) to show that e,(x) is indeed a symmetric function 
of the components of x. If it is to be understood that the indeterminates x are related to 
class parameters c$ as in (3.3), so that e,(x) is a unitary group character, it is convenient 
and conventional to denote this character (3.2) more simply by 

{PI = e,. (3.4) 

The simplest symmetric functions are the power-sum symmetric functions 
n 

S r ( x ) =  1 xi. (3.5) 
j = 1  

Further symmetric functions are defined multiplicatively by 

S ,b)  = S,,(X)S,,(X) * * (3.6) 

where p = (pl, p2, . . .) is a partition. Such a function serves as a generating function for 
characters xr of the symmetric group S r  if p is a partition of r, through the relation due 
to Frobenius (1900): 

(3.7) 

A particularly important special case of this relation, applicable to (3.3), follows from a 
result of Murnaghan (1938, page 134) and takes the form 

(3.8) 

With this preamble it is easy to interpret a whole class of subjoinings to the unitary 
group analogous to those discussed by Patera et a1 (1980) for which 9’ is a multiple of 
the unit matrix. To be specific the subjoining U ( n )  > U ( n )  corresponding to 

Q = P = r I  (3.9) 
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is defined by 
il) - (1) 

X J I  - - X r & t  

so that 
,y$’ = exp(i41) + exp(i4’) + . . . + exp(i4,) 

= exp(ir&) + exp(ir&) + . . . + exp(ir&) 

(3.10) 

(3.11) 

where use has been made successively of (3,1), (3.10), (3.5), (3.8) and (3.2). 
This result (3.11) specifies the subjoining of U(n) to U(n) defined by 

Q = Q(S,) = r1 (3.12) 

and may conveniently be written in the symbolic form 

U(n) > U(n) (1) + S, = e~p(irq5~) + e~p(irq5~) + . . . + exp (ird,) 

= { r ) - - { r - 1 ,  1}+{r-2, 1’)- . . . . (3.13) 

The corresponding branching rule (2.6) is given by 

Ub) > U(n) { A ) +  Sr 0 {A} (3.14) 

where 0 signifies the operation of plethysms introduced by Littlewood (1950, page 
206) as a new multiplication of S functions. This is essentially a type of substitutional 
operation which applies to any symmetric functions, so that in particular 

Sr 0 {h}=Sr  0 = e A ( X ; ,  x ; ,  . . ) = e *  0 S, = ( A } @  S,. (3.15) 

This identity allows the evaluation of the branching rule (3.14) to be made via the 
combinatorial methods of Littlewood (1951), Foulkes (1951) or Plunkett (1972). 
Alternatively, the use of (3.15) and (3.8) in (3.14) gives 

U(n)>U(n) {A}+({r}-{r-1, l}+{r-2, 12}- . . .)  @ { A )  

= { A ) @  ( { r } - { r - I ,  1>+{r-2,  1’)- . . .) 

(3.16) 

where the branching multiplicities Bi;*j may now be evaluated using the algebra of 
plethysms developed by Littlewood (1950, page 290). 

An illustrative example is provided by the case r = 3, giving in place of (3.13) 

U(n) > U(n) (1) + S 3  = (3) -{21) +(13). (3.17) 

It follows that 

U h )  > U(n) (2) + s3 0 (2) = (2) 0 s3 
= (2) 0 ((3) - {21)+ {I3)) 

= (2) 0 (3) - (2) 0 (2 1) + (2) 0 { 13} 

= {6)+{42)+(23}-{51)-{42)-(321)+{32)+(41’) 

= (6)- (51) + (41’) + (3’) - (321) +(23) (3.18) 
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and 

{ 1 ’} + S3 0 { 1 ’} = { 1 ’} 0 S 3 = { 3 ’} - { 3 2 1) + { 3 1 ’} + {23} - { 2 1 ‘} + { 1 6}, (3.19) 

where use has been made of the known plethysms of the form {v} 0 {A} as tabulated, for 
example, by Butler and Wybourne (1971). 

In the case of the subjoining defined by (3.9), or equivalently (3.13), the integer r 
need not necessarily be prime. However, as pointed out by Patera et a1 (1980), such a 
subjoining is only maximal if this is the case. Indeed if P = Q = r l  = p q l  it is clear that 
the subjoining corresponding to $ = p q 4 ,  defined by 

U ( n )  > U ( n )  (3.20) 

may be defined by the successive transformations 8 = q+ and $ = p 8  corresponding to 
the existence of the subjoining chain U ( n )  > U ( n )  > U ( n )  with the first stage defined by 
Q = Q(S,) = p l  and the second by Q = Q(S,) = q l  so that in accordance with (2.12), 
(3.20) is defined by 

(1) + S r  = S,, = exp(ipq&) + exp(ipqq5’) + . . . + exp(ipq4,) 

Q = Q(S,)Q(S,) = p Q l  = p q l =  Q(S,,). (3.21) 

It follows that the complete chain is specified by 

U ( n )  > U ( n )  > U ( n )  { l l +  s, + S P ,  

and the corresponding branching rule is then 

U ( n )  > U ( n )  > U ( n )  {A}+ S, 0 { A ) +  S, 0 iS ,0  {A}) 

= (S, 0 S,) 0 {A) 

= S,, 0 {A} 

where use has been made of the associativity of the operation 0 to demonstrate that the 
result is in accordance with that which may be obtained directly from (3.20). 

4. Subjoinings specified by S ,  

Further subjoinings may now be generated by making use of (3.6) to define the 
subjoining of U ( n )  to U ( n p )  specified by 

(4.1) 

where p is a partition of r into p non-vanishing parts and use has been made of (3.7) and 
(3.4). The corresponding branching rule takes the form 

As an example, the case p = ( 2 , l )  defines the subjoining 

(4.3) 
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corresponding, in more detail, to 

(1) = exp(iGl) + exp(ib2) + . . . +exp(ib,z) 

+s2,1(x)=(x:+x: + . . . + X 2 , ) ( X 1 + X 2 +  . . . +x,) 

= exp(i341) + exp[i(2& + 4211 + exp[i(241+ 4311 + . . . . 
= ( e ~ p ( i 2 4 ~ )  +exp(i2~$~) + . . . + exp(i2qbn))(exp(iq51) + exp(iq5,) + . . . + exp(i4,)) 

(4.4) 

Thus with a suitable ordering of these terms the n 2  x n matrix Q is given by 

3 0 0  . . .  0 
2 1 0  . . .  0 
2 0 1  . . .  0 

2 0 0  . . .  1 
1 2 0  . . .  0 
0 3 0  . . .  0 
0 2 1  . . .  0 

0 0 0  . . .  3 -  

A typical branching then takes the form 

U(n2)>U(n)  {21+ s2,1 o (2) = ({31-{i3}) o (21 

= (3) o {2)-{3). {i3}+{i3} o (1’) 
= (6) + (42) - {412) - (3 13} + {2’1’} + { 16}. 

(4.5) 

(4.6) 
This subjoining is clearly not maximal since it may be defined by the chain: 

U(n2) = U(n) x U(n) > U(n) x U(n) = U(n) 

(1)+ {l} x {l}+ s 2  x S I  + s2s1= SZ,l (4.7) 

s2 = { 2) - { 1 ’} and s1= 111 (4.8) 

where 

so that for U(n’) = U(n) x U(n) > U(n) x U(n) 3 U(n) 

(1) + (1) x (1) + ((21 - {1”) x (11 + ((2) - (1 ’1) ’ (1 1 
= (3) + (21) -{21) - {13} = {3} - {13), (4.9) 

in agreement with (4.3). The use of the chain (4.7) together with (4.8) then gives the 
branching 

(2)+{2}x{2)+(12}x{12}+[({2}-{12)) o {2)1x[{1)o{211 

+[(W -11’1) 0 {1’11 x HI) 0 {1’>1 
= ((4) - (3 1) + (22)) x (2) + ({22) - (2 1 ’} + { i4}) x { 1 ’} 

+ {6)+{51)+(42)-(51)-{42)-{412}-{32}+{42)+{321}+{23) 

+ {3*)+ (321) +{2212)-{321} - (3 13} -{23} -{2212) 
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- (2 1 ‘} + {22 1 z} + (2 1‘) + { 1 6, 

= (6) + (42) - (4 1’) - (3 13) + (2’1’) + { 16), (4.10) 

in agreement with (4.6). 
The non-maximal nature of the subjoining (4.3), as shown by the existence of the 

chain (4.7), is also illustrated by the factorisation of Q(SZ,~), given in (4.5), in the form 

1 0 . . .  0 1 0 . . .  0- 2 0 a . .  0 0 0 . . .  0’ 
1 0  . . .  0 0 1 . . .  0 

1 0 . . .  0 0 0 . . .  1 
0 1 . . .  0 1 0 . . .  0 
0 1 . . .  0 0 1 . . .  0 

0 1 . . .  0 0 0 . . .  1 

0 2 a . .  0 0 0 . . .  0 

0 0 . . .  2 0 0 . . .  0 
0 0 . . .  0 1 0 . . .  0 
0 0 * . .  0 0 1 . . .  0 

0 0 . . .  0 0 0 . . .  1 

1 0 . . .  0’ 
0 1 . . .  0 

0 0 . . .  1 
1 0 . . .  0 
0 1 . . .  0 

0 0 . . .  1 

(4.1 1) 

(4.12) 

U(n) x U(n) > U(n) x U(n) 

U(n) x U(n) 2 U(n) 

These in turn yield the branching rules, used already in evaluating (4.10), 

(1) x {O)+ (0) x {I)+ sz x (0) + (01 x SI (4.13) 

(4.14) (1) x (01 +io1 x (11 + (1) + (1). 

U(n) x U(n) =I U(n) {a) IT) mZT (4.17) 
f 

The coefficients k;,, are the Kronecker-product multiplicities of S, defined by 

xp”xp” = c k;lYXt (4.18) 
A 

where A, p, v and p are all partitions of m. Similarly, the coefficients mZT are the 
Kronecker-product multiplicities of U(n) defined by the S-function product 

(4.19) 

where p is a partition of r = s + t if a and T are partitions of s and t respectively. 
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Just as (4.3) is not maximal, so for p > 1 the subjoining (4.2) is not maximal as 

U ( n P ) 3 U ( n ) x U ( n ) x  . . . x U ( n ) > U ( n ) x  . . . x U ( n ) = U ( n )  

indicated by the existence of the chain 

{l} + (1) x {l} x . . * x (1) + s,, x s,, x * . . x SPP + S,,S,, . . . spp = s,. 
(4.20) 

Clearly the non-maximal nature of the subjoining is a consequence of the multiplicative 
nature of the symmetric function S,(x). 

5. Subjoinings specified by k, 

To determine inequivalent maximal subjoinings other than those of § 3 it is important to 
realise the nature of the transformations (2.9) with respect to which subjoinings are 
equivalent. These transformations on Q imply, through (2.4), that for the subjoining 
U ( N ) > U ( n )  the N weights of the defining representation (1) of U ( N ) ,  which are 
generated from the highest weight (1 ,0 ,0 ,  . . . , 0) by the elements S of W U ( ~ )  = S N ,  are 
mapped by P onto a set of weights forming the basis of a permutation representation of 
WU(nj = S,, in the sense that the action of each element T of S, on a weight in this set 
yields, in general, another weight in the set. If the subjoining is to be maximal then the 
highest weight of this set must be unique and the whole set must be obtainable from this 
highest weight by the action of elements of S,. Such a weight is said to be U ( n ) -  
dominant (King and Al-Qubanchi 1980) and takes the form p = ( p l ,  p2,  . . . , p n )  where 
p is a partition. The complete set of weights said to be U(n)-equivalent to p is defined 
by 

C, = {m : m = Tp, T E WU(,j = S n } .  (5.1) 

In the case p = ( p l ,  p2, . . . , p n )  = (. . . 2"21"10"0) with n = a. + a1 + a2 + . . . , the number 
of distinct elements in C, is given by 

(5.2) c, = n!/ao!a1!az! . * * . 

It follows that maximal subjoinings are specified by 

In the special case where p = (r,  0 ,  0, . . . , 0) and, correspondingly, c, = n it is clear that 
(5.3) reduces to (3.13). 

More generally, adopting the notation of (3.3) it follows that the right-hand side of 
(5.3) is nothing other than the monomial symmetric function 

where, as in the definitions of Littlewood (1950, page 63), Hall (1959) and Stanley 
(1971), the summation is over those permutations 7~ E S, leading to distinct monomials 
in the components of x. The analogue of (3.7) is the expansion 
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which may be effected by the methods of Murnaghan (1938, page 163) or Littlewood 
(1950, page 90). 

Thus (5.3) may be written in the form 

ill+ k, = c L:{cCl 
&-r 

Uk,) > U(n 1 

where p is a partition of r. The corresponding branching rule takes the form 

which yields the branching multiplicity coefficients through the algebra of plethysms. 
An example of a maximal subjoining of this type is provided by 

U(n(n - l ) ) > U ( n )  {I}+ kzi(x) 
2 2 2 2 =x:x2+x1xg+. . . +x1x,+x2x1+x2x3+ . . . 

= ezl(x)-2el3(x) ={21}-2{i3}. ( 5 . 8 )  

This corresponds to 

x!,? = exp(irlrl) +exp(i+2) + . . . + exp(i$,,(,-1]) 

= expLi(241 + h ) 1 +  exp[i(241 + &)I + . . . + exp[i(241+ 

+ exp[i(h + 242)1+ exp[i(242 + 4 3 ) 1 +  . . . 

so that 

2 1 0 * . .  0 0 
2 0 1 . . .  0 0 1: 
2 0 0 . . .  0 1 

1 2 0 . . .  0 0 
Q = Q(kzi) = 

0 2 1 . . .  0 0 L- 0 0 0 . . .  1 2 

(5.9) 

(5.10) 

A typical branching is given by 

U(n(n - l ) )>U(n)  {2}+ kz1O {2}= ({21}-2{13}) O{2} (5.11) 

={21}0{2}+2({1~}0{i~})-2({21}. {i3})+{13} .{i3} 

= (42) - (3 2 1) - { 3 1 3 }  + 2{23} + {22 1 ’} - (2 14} + 3{ 1 6 } .  (5.12) 

Two further examples of maximal subjoinings of the form (5 .6)  are provided by 

U(n)  > U(n) 

~ ( i n ( n  - l ) ( n  -2)) x ~ ( n )  

{1}+ k3 = S3 = (3) - (21) + {13} (5.13) 

(5.14) 

and 

{I}+ k13 = e13 = {i3}. 
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The former coincides with (3.17) and yields the branching (3.18), whilst the latter gives 

U(& - l ) (n  - 2)) 3 U(n) {2}+ k 1 3  o (2) = {13) o (2) 

={23)+{214). (5.15) 

Furthermore, it is easy to see that (4.3) may be recovered by combining (5.12) and 
(5.8) to give the subjoining chain 

U(n2) =) U(n) x U ( n ( n  - 1)) >U(n)  x U(n) 3 U(n) 

(5.16) 

The corresponding branching rules yield 

(2) + (21 X (0) +{I) X{l> + (0) + (k3 O (21) X IO} + k 3  X k21 + (0) X (k21 O I2I) 

= ({ 6) - { 5 1) + (4 1 ’} + { 3’) - (3 2 1) + (23}) x (0) 

+ ((3) - (2 1) + { 13)) x ((2 1) - 2{ 1 3 ) )  + (0) x ((42) - (32 I) - (3 13} + 2{23} 

+ (2’1 ’) - (2 14) + 3{ 16)) 

+ { 6) + (42) - { 4 1 ’} - { 3 1 ’} + { 2 ’ 1 ’} + { 1 ‘} (5.17) 

where use has been made of (3.18) and (5.12) to obtain, once more, agreement with 
(4.6). In addition use has been made of the fact that the first stage is defined by the 
subjoining 

(5.18) U ( n 2 )  =) U(n) x U(n ( n  - 1)) (11 + 11 1 x (0) + (01 x (11 

with branching rule 

U(n2) 3 U ( n )  x U ( n ( n  - 1)) {AI+C m;),{a>x{.rl (5.19) 

and the last stage is defined by (4.14) with branching rule (4.17), so that the relevant 
coefficients are given in both cases by (4.19). 

The non-maximal nature of (4.3) is thus illustrated not just by the existence of the 
subjoining chain (4.7) but also by the existence of the subjoining chain (5.16). In the 
latter case the corresponding factorisation of Q(S2 , )  is given by 

Q(S,i) = 

1 0 . . .  0 0 0 . . .  0’ 
0 1 . . .  0 0 0 . . .  0 

0 0  . . . ,  1 0 0  . . .  0 
0 0 , . .  0 1 0 . . .  0 
0 0 , . .  0 0 1 . . .  0 

0 0  . . .  0 0 0  . . .  1. 

3 0 . . .  0 0 0 0 . . .  0‘ 
0 3 * . .  0 0 0 0 . . .  0 

0 0 . . .  3 0 0 0 * . .  0 
0 0 . . .  0 2 1 0 . . .  0 
0 0 . . .  2 2 0 1 . . .  0 

0 0 & . .  0 2 0 0 * . .  1 
0 0 . . .  0 1 2 0 . . .  0 

0 0  . . .  0 0 0 0  . . .  2. 

1 0  . . .  0- 
0 1 . . .  0 

0 0 * . .  1 
1 0 . . .  0 
0 1 . . .  0 

0 0 . . .  1. 
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The matrix a(&,) formed from this product is equivalent to the matrix formed from the 
product (4.11) under the transformation of the form (2.9) in which S permutes the rows 
appropriately and T is the identity. 

More generally, the non-maximal nature of (4.2) is illustrated not just by the 
existence of the chain (4.20) but also by the existence of the chain 

U ( n p )  2 u(cu(1J) x U(cu(2)) x U(cU(3)) x . . . > U ( n )  x U ( n )  x U ( n )  x . , . 3 U ( n )  

{I}+ (1) x (0)  x{O) x . . . +{O}  x(2) x(0) x . . . +{O) x (0) x (1) x . . . + . . . 
+ k,,(l) x (0)  x (0)  x , . . + (0)  x kv(2) x (0)  x , . , + ( 0 )  x (0)  x ku(3) x . . , + . . . 
+ k u ( i )  + ku(2) + ku(3) + . . . = S p  (5.21) 

where the partitions v( l ) ,  v(2), v(3), . . . may be found by making use of the expansion 
given by Littlewood (1950, page 63): 

(5.22) 

in which the coefficients q5f; are known compound characters of S,. The corresponding 
branching rule takes the form 

where 

This illustrates quite clearly the fundamental nature of the subjoinings defined by (5.6) 
which include all possible maximal subjoinings of U ( n )  to U ( N ) .  

However not all such subjoinings are maximal, as can be seen by considering the 
example 

U(n  (n - 1)) > U ( n )  {I}+ k 4 2 ( ~ )  (5.25) 

which may be defined by the chain 

U(n(n  -1))>U(n(n -1 ) )>U(n)  (1) + kz  + k a  (5.26) 

where the first stage is just a particular case of the subjoining (3.13) since k2 = S 2  and the 
second stage is defined by (5.8) since 

k 2 1 0  k z =  k 4 2 .  (5.27) 
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The corresponding factorisation of Q is given by 

Q ( k d  = 

= Q(kz)Q(kzi), (5.28) 

whilst the branching rule takes the form 

In general, the subjoining (5.6) 

with p = (pl,  p 2 , .  . . , p,,), is maximal if and only if p l ,  p2,  . . . and pp have no common 
factor. If, on the other hand, q is the highest common factor so that p =  
q(u1, u 2 ,  . . . , U,,) then there exists the chain 

with branching rule 

6. Subjoinings specified by e,, 

Subjoinings include embeddings gs a special case. These are those subjoinings of the 
type (2.3) in which the branching multiplicities B k  are restricted to be non-negative 
integers for all irreducible representations A G  and p H  of G and H respectively. In such a 
case it is conventional to write G 2 H rather than G > H. 

In the case of the group G = U(N) embeddings are defined as in (2.1 1) by 

where necessarily 

is the dimension of the irreducible representation p ~ ( j ) .  This embedding is clearly not 
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maximal by virtue of the existence of the chain 

U ( N ) ~ U ( N l ) X U ( N 2 ) X , ,  . I H x H x . .  . 3 H  

{l}-+{l}X{O}X., , +{O}X{l}X . .  . + . . . 

where q H  denotes the identity representation of H. The corresponding branching rule 
is : 

-$ 1 mb(l)u(2) ... ( P H ( 1 )  0 {a(l)}) (PH(2) 0 {a(2)}) * * * 
U ( l ) , U ( 2 ) , . . .  

=(PH(l)+FH(2)+ * . ) @ { A } ,  (6.5) 

precisely as in (5.24). 
It follows that the maximal embeddings in the unitary group are of the form 

U(d,,) = H {I}+ P H .  (6.6) 

Confining attention to the cases for which H = U(n) this yields the maximal embeddings 

W,) = U(n) {l}+e, ={p)=,y$’ (6.7) 

with corresponding branching rules 

U(d,) = U(n) { A I +  e ,  0 {A) = {P I  0 {A}, (6.8) 

where use has been made of (3.2) and (3.4). 

a maximal subjoining. This is a consequence of the expansion 
It should be stressed that although (6.7) is a maximal embedding it is not, in general, 

where KP, is a non-negative integer, which is an element of Kostka’s matrix as discussed 
by Littlewood (1950, page 191) in terms of standard Young tableaux. These 
coefficients are nothing other than U(n) dominant weight multiplicities, as stressed 
more recently (King and Plunkett 1972, 1976) by virtue of the expansion of unitary 
group characters in accordance with (2.2): 

(6.10) 

(6.11) 
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If the expansion (6.9) contains more than one term the maximal embedding (6.7) is a 
non-maximal subjoining as indicated by the existence of the chain 

U(d,) 2 U(c,(lj) x U(cp(2j) x , . . > U(n) x U(n) x , , .2  U(n) 

{1 }+{1)x {0}x . .  , + { O } x { l } x , ,  , + ,  , , 
+ k p ( l )  x (0)  x . . . + { O }  x kp(2j x . . * + . I 

-+ k p ( l )  + kp(2) + . . . = e,(x), (6.12) 

exactly as in (5.21). The corresponding branching rule yields (6.8) in the form 

(6.13) 

Just as the only subjoinings defined by (4.1) which may be maximal are those of the 
form (3.13), corresponding to the identity S ,  = k,, so the only embeddings defined by 
(6.7) which may be maximal subjoinings are those for which p = (1') corresponding to 
the identity el' = k l r .  Such an example is provided by (5.14). 

7. Branching rule evaluation 

It has been tacitly assumed in all the previous sections that tables of plethysms of the 
form { p }  0 {A} are available, as indeed they are in the work of Ibrahim (1950), Butler 
and Wybourne (1971) and Vanagas (1971), for example. This together with the algebra 
of plethysms given by Littlewood (1950, page 290) leads to the validity of all the results 
of the form (3.18), (4.6), (4.10), (5.12) and (5.17) given here. It should be pointed out 
that quite apart from the use of recurrence relations and the like to obtain such tables, 
the most straightforward way of defining a plethysm is as a mapping between weight 
spaces (King and Plunkett 1972) corresponding to a substitutional operation as stressed 
by Read (1968) and Thomas (1976). This definition allows for the evaluation of 
plethysms of any sort of symmetric functions by a straightforward enumerative pro- 
cedure. 

In general the subjoining of U(n) to U(N) is defined by 
N 

i= 1 
{I} = exp(ilCI1) +exp(i+z) + . . . + exp(i+N) = 1 y j  U(N) ' U(n 1 

where, in addition to using (3.3), it has been convenient to introduce 

y j  = exp(i+i) for j = 1,2, , . . , N. (7.2) 

Here N is the number of terms in the expansion of the right-hand side to give the 
particular symmetric function q ( x ) ,  so that 

N = q(1, 1, . . I 1) =I BlL}} d,. , (7.3) 
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The corresponding branching rule is then 

U ( N  ’ U ( n )  {AI + 4 (x) 0 {AI, 

which may be evaluated by noting that, just as in (7.1), 

(11 = el(Y) = 4(x) ,  

{AI = eA(y) = q ( x )  0 {AI. 

so in (7.4) 

For example, if 

3 3  3 {1l=el(y)=yl+y2+.  . . C Y , =  S ~ ( X ) = X ~ + X ~ +  . . . +  x n  

as in (3.17), then 

{ 2 } = e z ( y ) = y l + y 1 ~ 2 + ~ 1 ~ 3 + .  ..+y1yn+y:+y2y3+. . . +  y 2 y n + .  . . + ~ 2 n  2 

6 3 3  3 3  3 3  6 3 3  3 3  6 
= X I  + X 1 X 2  + X I X ~  + . . . +XIXn+Xz + X Z X ~  + . . . x ~ x , + .  . . + x n  

= k 6 ( X )  + k 3 2 ( ~ )  

= 

where the last line may be seen to be valid by consulting the weight multiplicity table: 

k6 ks1 k42 k412 k32 k321 k313 k23 k2212 k214 k16 

e 6 1 1 1 1 1 1 1 1 1 1  1 
--e51 -1 -1 -2 -1 -2 -3 -2 -3 -4 -5 

e412 1 0 1 3 1 3 6  10 
e32 1 1 1 1 2 3  5 

-321 -1 -2 -2 -4 -a -16 
ez3 1 1 2  5 

S 3 0 e 2 1  0 0 0 1 0  0 0 0 0 0 

obtained from a more complete tabulation (King and Plunkett 1976). Alternatively, 
use could be made more directly of the matrix L in (5.6) which is the inverse of the 
weight multiplicity matrix K of (6.10). This result (7.8) confirms (3.18). 

Similarly, if 

In order to evaluate this expression it is only necessary to establish in how many distinct 
ways the leading term X ? ~ X ; * .  . . of k,fx) may be formed for eachpartition p of 6. These 
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leading terms arise in the following way: 

(2  1 0 * . .)(2 1 0 * . *)+ (4 2 0 * . .) 
(2  1 0 * . .)(2 0 1 * . .)+(4 1 1 . . .) 

(2  1 0 . . .)(1 2 0 . . . )+(3  3 0 . , .) 

(2  0 1 . . .)(1 2 0 . . . )+(3 2 1 . . *)  

2 4 2  
y1 =x1x2 

y1y2=x1x2x3 

y l y n  =x1x2 

y2yn=x1x2x3 

y l y 2 n  = Y ~ y n + l =  YnJ’2n-1= X I X Z X ~  

4 

3 3  

3 

2 2 2  

(2  1 0 0 . . .)(O 1 2 0 . . . )+(2  2 2 0 . . *) 

(2  0 1 0 . . . ) (O 2 1 0 . * . )+(2 2 2 0 . . *)  

(1 2 0 0 . . .)(1 0 2 0 . * . )+(2  2 2 0 . . .) 

( 2  0 1 0 . . .)(O 2 0 1 . . . ) + ( 2  2 1 1 . . .) 

2 2  
y 2 Y n + 2 =  y 3 Y n + 1  = X I X ~ X ~ X ~  

(2  0 0 1 . . .)(O 2 1 0 . . . )+ (2  2 1 1 , , .). (7.11) 

This is sufficient to show that: 

{21= ez(y)  = k42(X) + k412(X) + k32(x) + k321(x) + 3k23(x) +2k2212(x) 

= e42(x) -e321(x) -e313(x) +2e23(x)+e~2~2(x)  -ez14(x) +3e16(x), (7.12) 

in agreement with (5.12), where once again recourse has been made to weight 
multiplicity tables (King and Plunkett 1976) which yield: 

e 4 2  1 1 1 2 3 3 4 6  9 
-e321 -1 -2 -2 -4 -8 -16 
- e 3 l 3  -1 0 -1 -4 -10 

2e23 2 2 4 1 0  
e221’ 1 3  9 

-%la -1 -5  
3e16 3 

This last example illustrates that the method is both powerful and straightforward 
when maximum use is made of the Weyl symmetry groups of U(W) and U(n) to limit the 
required projections to those of the type (7.11) onto the highest weights p of each set 
C,,. This has previously been used in the evaluation of S-function plethysms (King and 
Plunkett 1972) which depend, as do the calculations here, essentially upon the 
evaluation of the coefficients in 

k,  0 kA = Pl;Ak,. (7.13) 
” 

Thus only the first term of (7.11) contributes to k Z 1  0 k z ,  whilst all the others 
contribute to k z 1  0 klz = k21 0 elz. Hence, as in (7.12), 

{12}= elz(y)  = k412(x)+ k&)+ k 3 2 1 ( ~ ) + 3 k 2 3 ( ~ ) + 2 k * l ( x )  

= e412(x) + e32(x) - e3z1(x) - 2e313(x) + 3e23(x) + e 2 1 4 ( x )  + el+) 
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by virtue of the table 

e412 1 0 1 3 1 3 6 1 0  
e32 1 1 1 1 2 3  5 

-2e-31; -2 0 -2 -8 -20 

e214 1 5 
e l6  1 

-321 -1 -2 -2 -4 -8 -16 

3ez3 3 3 6 1 5  

8. Conclusion 

From the remarks at the beginning of Q 5 it is easy to generalise the maximal subjoinings 
of U ( n )  to U(N) specified by (5.3), to the case of subjoinings of any compact Lie group 
H to U(N). The corresponding specification is 

where pH is an H-dominant weight of H (King and Al-Qubanchi 1980) 

C,  = {m : m = TpH, T E WH} 

and 
N = cpH = IC,\. 

u ( c p ~ )  > H {A}+ w, 0 {A} (8.2) 

The corresponding branching rules take the form: 

with this plethysm defined by the mapping between weight spaces fixed, up to 
equivalence under transformations of the type (2.9), by (8.1). 

It is thus a straightforward matter to determine subjoinings of the type (8.1) by 
studying the weight multiplicity tables of both the classical (King and Plunkett 1976) 
and exceptional (King and Al-Qubanchi 1978, 1980) Lie groups. To be precise, if the 
dominant weight multiplicities of these groups are denoted by Mr:, where pH specifies 
the dominant weight and pH the irreducible representation in which this weight has 
multiplicity M r z ,  then the triangular nature of the weight multiplicity matrix, which has 
each of its diagonal elements equal to 1, is such that it is easy to invert. This yields a 
matrix whose elements define the expansion analogous to (5.5): 

w,= c L;:pH. 
W H  

This relation allows (8.1) to be written in the required form, namely 

(8.3) 
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with 

N = LFZd,, = cPH. 
WH 

This specification serves to define 

Q = QU(N)H = Q(w,) 

and the corresponding branching rule takes the form 

U(N) > H {AI+ wp, o {AI = ( c L F : ~ ~ )  o IN. (8.6) 
W H  

In general the subjoinings (8.1) are not maximal in the sense that there may exist a 
chain of the form 

U ( N ) = J G > H  (1)’ UG’ wp, (8.7) 

where aG is the defining representation of a group G of dimension d,, = N = c,. In 
the case of a semi-simple compact Lie group H some such group G almost invariably 
exists for each pH. This group G may be anything from SU(N) to O(N), Sp(N) or even 
H itself. The problem is to determine G such that the second subjoining of (8.7) 

G > H  WG’W, (8.8) 

is maximal. 
Furthermore, for certain groups G the defining representation wG contains a second 

G-dominant weight in addition to UG itself. This is the null vector 0 which has 
non-vanishing multiplicity 

n G  = MOWG (8.9) 

in the cases for which G is SO(2k + 11, Gz, F4 or E8. There then exist chains of the form 

U(N) > G > H {1)+UG-flGO* wpH (8.10) 

with the second subjoining, which is maximal, defined by 

G > H  6JG * w, + nGO. (8.1 1) 

It is hoped to take up these points in a forthcoming paper. 
At  this stage it suffices to claim that the present paper sheds further light on the 

concept of subjoining introduced by Patera and Sharp (1980). For example, the special 
case of (3.13) with n = 2 and the imposition of the unimodular condition gives 

SU(2) > SU(2) (1) + S, = exp(irdl) + exp(ird2) = exp(ir4) + exp(-ird) 

= { r } - { r - 1 ,  1) 

= { r }  - { r  - 2}, (8.12) 

in accordance with the result (3.2) of Patera eta1 (1980), whilst (3.13), (4.1), (5.6) and 
(6.7) provide a wealth of generalisations. For other groups (8.7) and (8.10) provide the 
key to the determination of all maximal subjoinings. The only remaining task is the 
identification of G. This has been done in some cases by Patera et a1 (1980) whose 
illustrations of maximal subjoinings can all be shown to be of the form (8.8) or (8.11). 
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